LezioniDiMatematica.net

 
 
 
  Torna alla Home page del sitoIscriviti alla nostra newsletter per essere informato sugli aggiornamenti del sitoContattaci       
     

          

     
     

 

AREA del QUADRATO conoscendo la DIAGONALE

 

 

Per comprendere  

 

Abbiamo visto che l'AREA del QUADRATO si ottiene MOLTIPLICANDO la misura del LATO per SE STESSA. Ovvero:

A = l x l = l2

dove

A é l'area del quadrato

l è  il lato.

 

 

Vediamo, ora, come è possibile calcolare l'AREA del QUADRATO conoscendo solamente la misura della DIAGONALE.

Dallo studio del QUADRATO sappiamo che esso è un PARALLELOGRAMMA avente tutti e quattro i LATI CONGRUENTI e tutti e quattro gli ANGOLI CONGRUENTI.

Come sappiamo anche il ROMBO ha tutti i lati congruenti. 

Inoltre nel QUADRATO  le DIAGONALI sono CONGRUENTI, cosa che non accade, normalmente, nel rombo.

Quindi possiamo affermare che il QUADRATO è un ROMBO PARTICOLARE con le diagonali congruenti.

Di conseguenza, per trovare l'AREA del QUADRATO, se conosciamo la misura della sua diagonale, possiamo applicare la formula per il calcolo dell'area del rombo, ovvero:

A = (d1 x d2)/2

dove

A é l'area del quadrato

d1 è una delle diagonali

dè l'altra diagonale.

 

Ma, poiché nel quadrato, le due diagonali sono congruenti, possiamo scrivere la formula precedente in questo modo:

A = (d x d)/2 = d2/2.

 

La formula inversa è:

Formula inversa area quadrato conoscendo diagonale

 

 

 

Esempio 1:

calcolare l'area di un quadrato la cui diagonale misura cm 7.

Applichiamo la formula:

 

A =  d2/2 = 72/2 = cm2 24,5.

L'area del rombo è di cm2 24,5.

 

 

Esempio 2:

l'area di un quadrato misura m2 18. Quanto misura la sua diagonale?

Applichiamo la formula inversa

Calcolo della diagonale del quadrato conoscendo l'area

 

 

Lezione precedente - Lezione successiva

Indice argomenti sull'area dei poligoni

 

Per comprendere

Tutte le altre lezioni sull'area dei poligoni

 

 

 

Lezioni, Esercitazioni e Approfondimenti di matematica e geometria

MATEMATICA:

GEOMETRIA:

GEOMETRIA ANALITICA:

 

 

 
 
www.SchedeDiGeografia.net

wwwStoriaFacile.net

www.EconomiAziendale.net

www.DirittoEconomia.net

www.LeMieScienze

www.MarchegianiOnLine.net

 

 

Il significato dei principali simboli usati in matematica e geometria

I nostri ebook

 

 

 

 

 

 

 


 

Ripetizioni on line di Economia Aziendale

 


Altro materiale presente presente su LezioniDiMatematica.net
Questo sito viene aggiornato senza nessuna periodicità. Non può pertanto considerarsi un prodotto editoriale ai sensi della legge n. 62 del 7.03.2001

Il materiale presente sul sito non può essere riprodotto senza esplicito consenso dell'autore

Disclaimer-Privacy

Partita IVA: 02136250681