LezioniDiMatematica.net

 
 
 
  Torna alla Home page del sitoIscriviti alla nostra newsletter per essere informato sugli aggiornamenti del sitoContattaci       
     
   
     
     

 

ANGOLI FORMATI da DUE RETTE PARALLELE TAGLIATE da una TRASVERSALE

 

 



Per comprendere  

 

Disegniamo DUE RETTE PARALLELE e chiamiamole a e b:

 

Rette parallele

 

Ora disegniamo un'altra retta, che chiamiamo r, e che interseca le rette a e b rispettivamente nei punti A e B:

Angoli formati da due rette parallele tagliate da una trasversale

 

La retta r, incontrando le rette a e b forma 8 angoli che abbiamo indicato, nella figura sottostante, ognuno con un numero da 1 a 8, così come abbiamo fatto anche nella lezione precedente:

Angoli formati da due rette parallele tagliate da una trasversale

 

Usando un GONIOMETRO possiamo facilmente verificare che sono  UGUALI TRA LORO gli ANGOLI:

  • Angoli formati da due rette tagliate da una trasversale, cioè gli ANGOLI ALTERNI INTERNI;

Angoli alterni interni

Angoli alterni interni

 

  • Angoli formati da due rette tagliate da una trasversale, cioè gli ANGOLI ALTERNI ESTERNI

Angoli alterni esterni

Angoli alterni esterni

 

 

Sempre usando un GONIOMETRO possiamo verificare che sono SUPPLEMENTARI gli ANGOLI:

  • Angoli formati da due rette tagliate da una trasversale, cioè gli ANGOLI CONIUGATI INTERNI

Angoli coniugati esterni

Angoli coniugati esterni

 

  • e gli angoli Angoli formati da due rette tagliate da una trasversale, cioè gli ANGOLI CONIUGATI ESTERNI

Angoli coniugati esterni

Angoli coniugati esterni

 

Ricordiamo che due angoli si dicono SUPPLEMENTARI  se la loro SOMMA è un ANGOLO PIATTO ovvero un angolo di 180°.

 

Le proprietà che abbiamo appena visto si verificano solamente nel caso in cui due rette sono parallele. Di conseguenza, se due rette tagliate da una trasversale formano con essa due angoli alterni interni uguali o due angoli alterni esterni uguali o angoli corrispondenti uguali possiamo dire senz'altro che le due rette sono parallele. Allo stesso modo possiamo dire che due rette sono parallele se esse, tagliate da una trasversale, formano angoli coniugati supplementari.

 

Quindi possiamo affermare che DUE RETTE SONO PARALLELE se, TAGLIATE DA UNA TRASVERSALE, formano con essa:

  • ANGOLI ALTERNI INTERNI o ESTERNI UGUALI;

oppure

  • ANGOLI CORRISPONDENTI UGUALI;

oppure

  • ANGOLI CONIUGATI INTERNI o ESTERNI SUPPLEMENTARI.

 

 

   Lezione precedente - Lezione successiva

Indice argomenti su rette parallele e perpendicolari

 

Per comprendere

Tutte le altre lezioni su rette parallele e perpendicolari

 

 

 

Lezioni, Esercitazioni e Approfondimenti di matematica e geometria

MATEMATICA:

GEOMETRIA:

GEOMETRIA ANALITICA:

 

 

 
Trova l'insegnante perfetto per le tue ripetizioni
 
www.SchedeDiGeografia.net
 
wwwStoriaFacile.net
 
www.EconomiAziendale.net
 
www.DirittoEconomia.net
 
www.LeMieScienze
 
www.MarchegianiOnLine.net
 
Il significato dei principali simboli usati in matematica e geometria

 

I nostri ebook

 

 

 

 

 

 

 

 

Ripetizioni on line di Economia Aziendale

 

Altro materiale presente presente su LezioniDiMatematica.net
Questo sito viene aggiornato senza nessuna periodicità. Non può pertanto considerarsi un prodotto editoriale ai sensi della legge n. 62 del 7.03.2001

Il materiale presente sul sito non può essere riprodotto senza esplicito consenso dell'autore

Disclaimer-Privacy

Partita IVA: 02136250681