LezioniDiMatematica.net

 
 
 
  Torna alla Home page del sitoIscriviti alla nostra newsletter per essere informato sugli aggiornamenti del sitoContattaci       
     
   
     
     

 

NUMERI PRIMI GEMELLI

 

Per comprendere  

 

Tra i NUMERI PRIMI troviamo una categoria particolare rappresentata dai NUMERI PRIMI GEMELLI.

Con questa espressione si intendono DUE NUMERI PRIMI che si trovano nella sequenza dei numeri naturali vicinissimi tra loro e sono SEPARATI solamente da UN NUMERO PARI.

Prendiamo i NUMERI NATURALI:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ecc..

 

Come sappiamo 2 e 3 sono due numeri primi. Essi sono uno di seguito all'altro: quindi la loro differenza è 1.

Ad eccezione di questi due numeri primi, tutte le altre coppie di numeri primi (3 e 5, 5 e 7, 7 e 11, 11 e 13, 13 e 17) sono distanziate da almeno un numero pari: quindi la differenza tra queste coppie di numeri primi è come minimo 2.

Diciamo, allora, che quando la DIFFERENZA tra un NUMERO PRIMO  e quello PRECEDENTE è 2, questa coppia di NUMERI PRIMI viene detta NUMERI PRIMI GEMELLI.

Quindi se chiamiamo p un numero primo e il successivo numero primo è uguale a p+2, questa coppia di numeri è detta NUMERI PRIMI GEMELLI.

 

Esempio:

3 e 5 sono primi gemelli;

5 e 7 sono primi gemelli;

11 e 13 sono primi gemelli;

41 e 43 sono primi gemelli;

71 e 73 sono primi gemelli.

 

Il primo matematico a dare a tali numeri primi il nome di gemelli fu Paul Stäckel, un tedesco studioso della teoria dei numeri.

I numeri primi gemelli sono infiniti? Sembrerebbe di sì, ma a tutt'oggi nessuno è riuscito a dimostrarlo e questa rimane ancora una congettura.

 

Indice argomenti su numeri primi

 

Per comprendere

Tutte le altre lezioni sui multipli e i divisori

 

Per approfondire

 

 

Lezioni, Esercitazioni e Approfondimenti di matematica e geometria

MATEMATICA:

GEOMETRIA:

GEOMETRIA ANALITICA:

 

 

www.SchedeDiGeografia.net
 
wwwStoriaFacile.net
 
www.EconomiAziendale.net
 
www.DirittoEconomia.net
 
www.LeMieScienze
 
www.MarchegianiOnLine.net
 
Il significato dei principali simboli usati in matematica e geometria

 

I nostri ebook

 

 

 

 

 

 

 

 

Ripetizioni on line di Economia Aziendale

 

Altro materiale presente presente su LezioniDiMatematica.net
Questo sito viene aggiornato senza nessuna periodicità. Non può pertanto considerarsi un prodotto editoriale ai sensi della legge n. 62 del 7.03.2001

Il materiale presente sul sito non può essere riprodotto senza esplicito consenso dell'autore

Disclaimer-Privacy

Partita IVA: 02136250681